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Abstract

Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by

the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated

electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It

opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas,

where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we

review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions.

The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic

reconnection research are presented.
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1. Introduction

Magnetic reconnection (MR) rapidly converts the magnetic

field energy to the kinetic and thermal energies of the

charged particles in plasmas with the topological varia-

tions[1–4]. It is one of the fundamental phenomena in astro-

physics and is considered to participate in various processes

such as coronal mass ejections[5,6], solar flares[7–9], closure

of the planetary magnetosphere[10–12], γ -ray bursts[13–16] and

pulsar winds[17–19]. In the solar-terrestrial environment where

there are full of space plasmas, the study of MR is critical

and essential for understanding and modelling the corre-

sponding physical processes.

MR also plays important roles in laboratory plasmas

on fusion instabilities[4,20–23] and the weakly ionized

plasmas[24]. Early experiments on linear device with highly

reproducible plasma presented clear maps of the magnetic

fields with movable probe[25]. In the toroidal fusion devices
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such as Tokamaks, the plasmas tend to relax to a quasi-

stationary state via the global magnetic self-organization

based on MR process. Based on the features of magnetic field

in the toroidal plasmas, the magnetically driven reconnection

experiments are performed on the special devices such

as magnetic reconnection experiment (MRX)[26,27] and

versatile toroidal facility (VTF)[28]. The plasma density on

such devices is relatively low being approximately equal to

∼1012 −1014 cm−3 with the corresponding magnetic field

strength about kG. Therefore the magnetically driven

reconnection occurs in low β plasmas where magnetic

pressure dominates over thermal pressure. The experiments

preformed with MRX and VTF include the study of two-

fluid effects on MR with different collisionality[29] and

the measurements of spontaneous MR in which energetic

ion outflows and rapid electron temperature rise are

detected[30]. In addition to the experiments, kinetic theories

and simulations also become important tools for MR in

laboratory plasmas. Spontaneous magnetic reconnection

mechanisms in plasma with tearing-mode instability have

been studied[31]. MR in collisionless plasmas has been

discussed in detail via particle simulations[32–34]. In a weakly

ionized plasma, the ampipolar diffusion changes the time
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and space scale of MR, which makes reconnection faster

compared to the case without ion-neutral drift[24].

The motivations of the studies in MR are mainly inspired

by the explanations of the charged particle acceleration

mechanisms in space plasmas[35–37]. Recent theoretical

works discussed about the particle acceleration during the

X-point collapse[38,39]. Based on the recent astrophysical

observations of 100 MeV gamma flares from the synchrotron

radiation of the Crab Nebula detected by Agileand Fermi-

LAT[40,41], the high energy photons refer that the accelerated

charged particles in the nebula have the energies with a mag-

nitude of PeV. The temporal evolution of the γ -ray shows

that a strong non-stationary electric field accelerates the

corresponding emitting electrons. Theoretical and numerical

analyses propose that the electron acceleration via the

relativistic MR is the potential mechanism explaining this

phenomenon[42–45]. It arouses an interesting challenge how

we can prove such hypothesis by modelling the astrophysical

processes under the conditions of terrestrial laboratories.

The presence of high power laser facilities provides an

unique way to investigate MR via laser-plasma interactions.

Great progress has been achieved since the invention of

the chirped pulse amplification techniques[46]. The state-

of-the-art laser intensities exceed 1022 W/cm2[47,48] and

the forthcoming facilities are designed to reach more than

1023 W/cm2 with the 10 PW class power[49]. The interac-

tions between ultra-intense laser pulse and plasma generate

suprathermal electrons and strong magnetic fields in a short

temporal and limited spatial scale. Such properties make

the laser-plasma interactions attract more and more attention

in recent decades in the MR community. In the pioneering

experiments presented on Vulcan laser[50], two nano-second

laser pulses with moderate intensities (∼1015 W/cm2) have

been used to irradiate on high Z (Au or Al) solid thin

foils. According to the Biermann battery effect[51], magnetic

fields with the magnitude of mega-Gauss were induced

and the plasma jets with high temperature electrons were

detected. Four nano-second pulses on OMEGA facility were

employed to ablate a plastic (CH) foil[52]. The time-resolved

proton deflection technique presented the evolution of the

magnetic field in the reconnection process. The experiment

performed on SG II facility forced magnetic field lines to

reconnect by the collisions of two plasma bubbles[53]. An

arc shape X-ray image was obtained and can be used to

model the loop-top X-ray source observed in solar flares.

In the more recent experiment on SG II, the effects of the

external guide magnetic field on the nonthermal electron

acceleration were discussed[54]. For the theory of the external

guide magnetic field on the nonthermal electron acceler-

ation see Refs. [55,56]. With higher laser intensities, the

formation of plasmoids and fan-like ejections with MeV

energy was obtained[57]. On the Gekko XII HIPER laser

system, the electron scale reconnection was presented in

which an external magnetic field was applied in the direction

perpendicular to the plasma propagation[58]. In addition to

the mentioned representative experiments, there are also a

number of theoretical and numerical works focused on MR

under the context of laser-plasma interactions. The colli-

sions of magnetized laser-produced plasma bubbles were

modeled by magnetohydrodynamics (MHD) simulations[59].

The electrons energization before and during the laser-driven

magnetic reconnection was presented by kinetic simulations

under the conditions of SG II laser facility[60,61].

With the increase of laser power, the laser-plasma

interactions transit to collisionless relativistic and even ultra-

relativistic regime in which high intensity electromagnetic

waves, relativistic energetic charged particles are gener-

ated[62]. It makes a favourable condition to investigate the

relativistic astrophysics processes mentioned above[63–65].

The MR in relativistic laser plasmas has been foreseen

by Askar’yan et al. who conjectured that the interactions

of magnetic field and electron beams under relativistic

laser-plasma conditions would undergo the magnetic

reconnection[66]. Recent kinetic simulations present MR

process under the relativistic regime. The configuration

of femtosecond laser pulses interacting with near critical

density plasma was considered in Ref. [67]. In this case,

the main contributions to inducing the electric field during

reconnection come from the gradient of electron pressure

tensor and the electrostatic turbulence according to the

generalized Ohm’s law. Nonthermal electrons with several

tens MeV energy were obtained. Due to the difficulties in

preparing the experiments and the diagnostics, the research

of relativistic MR is mainly addressed theoretically and

numerically[68–71].

Considering the laser intensity further increases to

the order of magnitude with the under construction

facilities[49,72], the energy of the charged particles and

the strength of the magnetic field are correspondingly

enhanced. However, due to the relativistic constraint of

the particle velocity, the electric current quickly saturates

and can no longer sustain the variation of the local

magnetic field. In such a case, the contribution from

displacement current becomes significant and dominates

the magnetic field annihilation and reconnection. This

also implies that the resistive MHD approximation and

the generalized Ohm’s law should be reconsidered[73,74].

Analysing this realm of processes, Syrovatskii[75] first

proposed the dynamic dissipation of the magnetic field.

Theoretical and numerical works demonstrated the intensive

charged particles acceleration in the MR current sheet

driven by inductive electric field and proved the important

role of displacement current in such an ultra-relativistic

process[76,77]. Recent kinetic simulation in a 3D geometry

presented the electron ejection from the non-adiabatic region

in MR, the formation and evolution of the current sheet with

the growth of tearing-like mode instability[78]. Such ultra-

relativistic MR is nontrivial and can be accessed in the near
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future with 10 PW class laser facilities. It will be in turn a

great motivation to develop and construct high power lasers.

MR is a fundamental process which causes great interests

in the past decades in space astrophysics, laboratory

astrophysics, plasma and fusion physics. The basic theories

within the frameworks of megnetohydrodynamics/electron

magnetohydrodynamics (MHD/EMHD) and observations

from astronomy have been reviewed in many articles and

books[1–4,63,79–86]. Here in this paper, we briefly review the

recent results obtained in the field of laser-driven ultra-

relativistic MR in collisionless plasmas. Since the process

is completely dynamical and non-stationary, it is out of

the MHD scenario and must be described in kinetics. The

paper is organized as follows. Simple models of magnetic

annihilation are presented in Section 2. In Section 3, the

magnetic field generation in ultra-relativistic laser-plasma

interactions is introduced. Section 4 presents the process

of MR and the out jets acceleration accompanied with

magnetic field dissipation. The recently proposed regimes

of MR for potential experiments are shown in Section 5. The

basic theories will be introduced with the demonstrations

of corresponding kinetic simulations performed by the

relativistic particle-in-cell code EPOCH[87,88].

2. Some theoretical problems of magnetic annihilation

In one dimensional case, the reconnection of magnetic field

lines is reduced to the annihilation of the opposite magnetic

fields. Such a simplified model contains the most important

feature of MR which refers the energy conversion from

magnetic field to the electric field.

Here, in this section, we present a 1D model to illustrate

the annihilation process under the conditions when oppos-

itively directed magnetic fields are initially imposed in a

homogenous plasma or in the vicinity of the thin current

sheet. Such a configuration may appear due to the current

sheet instability development or when a finite amplitude

electromagnetic wave interacts with thin plasma slab[89].

As has been noticed above, the ultra strong magnetic field

cannot be shielded by the thin layer of the collisionless

plasma because the electric current density cannot exceed

the value

jrel = enc (1)

since according to the theory of special relativity the electron

velocity cannot be larger than speed of light in vacuum, c.

Here e is the elementary electric charge and n is the electron

density. The magnetic field generated by the thin layer of

the collisionless plasma of the thickness l is approximately

equal to

B = 4πenl. (2)

Taking the layer thickness equal to the collisionless skin

depth de = c/ωpe, where ωpe =
(

4πne2/me

)1/2
with the

electron mass me, we can rewrite the strong field condition

given by Equation (2) as

B2

4πnmec2
> 1. (3)

This condition can be written as ωBe/ωpe >> 1, where

ωBe = eB/mec is the electron Larmore frequency.

Let us consider simple models for dynamics of strong

electromagnetic field interacting with a thin current sheet

and the plasma. We assume the current sheet localized in the

x = 0 plane. The problem is homogeneous along the y and z

coordinates and symmetric with respect to the x coordinate.

The Maxwell equations yield for the z-component of the

vector potential Az

1

c2
∂ttAz − ∂xxAz = 4π

c
jz + 1

c2
Az (x,t = 0)δ′(t)

+ 1

c2
∂tAz (x,t = 0)δ(t). (4)

The terms proportional to the time derivative of the Dirac

delta function δ′(t) and to the Dirac delta function δ(t) in the

r.h.s. give the initial conditions for the potential Az (x,t = 0)

and its time derivative ∂tAz (x,t = 0), respectively. The elec-

tric current density is

jz =
∑

j=e,p

e2
j nj (x,t)

Az

m2
j c4 + e2

j A2
z c2

, (5)

where ee = −ep. The conservation of the z component of

canonical momentum pz,j = −ejAz/c is taken into account.

2.1. Decay of magnetic field reversal configuration in

collisionless plasma

First analyze the case of the magnetic field annihilation in a

plasma. We assume that the initial (at t = 0) magnetic field in

homogeneous density n0 plasma has a form B = B0 sgn(x)ey

and there is no electric current in the plane x = 0.

In the limit of small amplitude field the solution of Equa-

tion (4) is for the electric field

Ez = B0J0

[

ωpe

√

t2 − (x/c)2

]

θ (ct −|x|), (6)

and for the electron momentum in the region | x |≪ ct

pz = eB0t

ωpe
1F2

({

1

2

}

,

{

1,
3

2

}

, − 1

4
ω2

pet2

)

. (7)
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Here θ(x) is the Heaviside step function, J0(x) is the Bessel

function of zeroth order and pFq

({

a1, . . . ,ap

}

,
{

b1, . . . ,bp

}

,x
)

is the generalized hypergeometric function[90] (in Equation

(7) p = 1 and q = 2). On both sides of the initial discontinuity

the electric field pulse propagates outwards at the velocity

equal to c. The pulse width is inversely proportional to

the time. Over a time of 1/ωpe the current sheet of the

width c/ωpe is formed. Asymptotically, at t → ∞ the

electric field vanishes and the electron momentum tends to

eB0/ωpe.

In the limit of strong magnetic field, when Equation (3)

is satisfied, we may use the ultra-relativistic approximation

assuming pz/mec >> 1 and neglecting the electric current

effects in Equation (4) for sufficiently short time interval.

From Equation (4) follows the wave equation for the electric

field. D’Alembert solution of this equation shows that in the

region | x |< ct, instead of initial magnetic field, an electric

field E = B0 directed along the z axis appears. The electron

momentum grows here as

pz = −eB0 (t −|x|/c) . (8)

The solution is valid at time less than ωBe/ω
2
pe. From Equa-

tion (8) follows that the electrons become ultra-relativistic

provided ωBe/ωpe >> 1, which corresponds to the condition

given by Equation (3).

Such an annihilation process is demonstrated via the 1D

kinetic simulations. A pair of opposite magnetic fields are

initially applied in a homogenous plasma as shown in Fig-

ure 1(a). A sharp magnetic boundary is formed around x = 0.

According to Faraday’s law,

∇ ×E = −1

c
∂tB, (9)

an electric field is induced with the evolution of the local

magnetic field. In the 1D case, only By component varies

along x-direction, and therefore the variation of electric field

is obtained as

Ez = −1

c
∂tAz. (10)

The expected electric field growing is shown in Figure

1(b). The strength of magnetic field significantly decreases

near the critical point of x = 0 and Ez grows in the cor-

responding region with a transverse expansion along x-

direction. Notice that such magnetic annihilation and electric

field generation are valid in both highly-conducting colli-

sional and collisionless plasmas and even in the vacuum. In

this review, the magnetic annihilation and reconnection in

the collisionless plasmas are focused.

Figure 1. (a) The initial condition of 1D model. (b) Magnetic field

annihilation and electric field growing.

2.2. Finite amplitude opposite polarity electromagnetic

wave interaction with thin current layer

Now we consider the finite amplitude electromagnetic wave

collision with the electric current carrying thin plasma layer.

This current sheet in the yz plane has the electric current

density described by the expression

j = I0δ(x)ez = n0lcδ(x)ez

∑

j=e,i

ej

pj,0
√

m2
j c2 +p2

0,j

. (11)

An electromagnetic wave of amplitude Ew, given at

t < 0 by the electromagnetic potential A = −Ew (ct +|x|) ·
θ(ct + |x|)ez, is incident on the current sheet. The equation

for the field (4) takes the form

c2∂tta− ∂xxa = −2ω0eδ(x)

×
[

a+πe
√

1+ (a+πe)
2
+µ

a−πi
√

1+µ2(a−πi)
2

]

+ 2e

mec2
(Ew +B0)δ

′(t)+ 2e

me

Ewδ(t), (12)

where

ω0e = 2πn0e2l

mec
, (13)

the normalized field equals a = eAz/mec2, the normalized

initial electron and ion momenta are πe = pe,0/mec and
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πi = pi,0/mec, respectively, and µ = me/mp is the electron

to ion mass ratio. We assume that mi = mp.

Equation (12) can be written by using the d’Alembert

relationship, giving the solution of the Cauchy problem for

the wave equation, as

a(x,t) =

−ω0e

∫ t−|x|/c

0

{

a
(

0,t′
)

+πe
√

1+ [a(0,t′)+πe]2

+µ
a
(

0,t′
)

−πi
√

1+µ2[a(0,t′)−πi]
2

}

dt′

+ 2πeI0

mec2
[|x | +θ(ct −|x|)(ct −|x|)]

− eEw

mec3
[(ct + x)θ(ct + x)+ (ct − x)θ(ct − x)] . (14)

To find the function a(0,t) we set x = 0 in Equation

(14) and differentiate it with respect to time t. The result

is an ordinary differential equation of the first order whose

solution is

∫ a

0

(0,t)

[

a′ +πe
√

1+ (a′ +πe)
2
+µ

a′ −πi
√

1+µ2(a′ −πi)
2

− 2πeI0

mec2ω0e

− 2eEw

mec2ω0e

]−1

da′ = −ω0et. (15)

One may see from Equation (15) that if the amplitude

of the electromagnetic wave is substantially large, Ew >

4πen0l−π I0/c, there can be no steady state solution. In the

limit t → ∞ the electromagnetic potential at x = 0 grows

proportionally to time as

a(0,t) ≈ − et

mec

[

Ew − π

c
(4en0lc− I0)

]

. (16)

Consequently, the unlimited acceleration of charged parti-

cles occurs with the particle momentum growing as

pz (0,t) ≈ −et
[

Ew − π

c
(4en0lc− I0)

]

. (17)

Substituting the function a(0,t) found from Equation (15)

to (14) we obtain the expression describing the electromag-

netic field outside the current sheet. In the case of super-

strong electromagnetic field, when Ew > 4πen0l−π I0/c, the

electric field has a form of two almost constant waves with

the amplitude Ew − 4πen0l + π I0/c propagating outwards

in two directions. For the electromagnetic wave incident on

the current sheet with moderate amplitude, Ew < 4πen0l −
π I0/c, the wave is reflected from the current sheet. In the

region | x |< ct the electric field vanishes and the magnetic

field is equal to By = (B0 +Ew)sgn(x). The momentum of

charged particles increases a finite value.

We note that the solution found here corresponds to the

paradigm of the thin foil nonlinear electrodynamics devel-

oped in Refs. [89,91–94].

2.3. Tearing mode instability of thin current layer

The 2D dynamics of thin current sheet is considered within

the framework of the tearing mode instability concept. The

electromagnetic tearing mode instability of thin current sheet

has been studied in Refs. [37,89,95–97]. The electromagnetic

field given by the vector A =
(

mec2a/e
)

ez and electrostatic

potential ϕ = mec2φ/e is governed by the equations

Wa = δ(x)J, (18)

Wϕ = δ(x)R, (19)

where W = ∂xx + ∂yy − c−2∂tt is the d’Alambertian,

J = 4π
∑

j=e,i

ejnjlvz,j/mjc
2 (20)

and

R = 4π
∑

j=e,i

ejnjl/mjc
2 (21)

are the surface electric current and electric charge density,

respectively. Here it is assumed that the variables a and

ϕ depend on the coordinates x, y and time t. Lineariz-

ing Equations (18) and (19) and presenting dependence of

the potentials on time and coordinates in the form a(1) =
a(1)(x)exp (−ωt + ikx) and ϕ(1) = ϕ(1) exp (−ωt + ikx), we

can write the Equations (18) and (19) as

d2a(1)

dx2
−Q2a(1) = δ(x)

(

Jaa(1) + Jϕϕ(1)
)

, (22)

d2ϕ(1)

dx2
−Q2ϕ(1) = δ(x)

(

Raa(1) +Rϕϕ(1)
)

, (23)

with Ja = ∂aJ, Jϕ = ∂ϕJ, Ra = ∂aR, and Rϕ = ∂ϕR, where

Q =
√

k2 −ω2/c2. (24)

The solution of Equations (22) and (23) yields

a(1)(x) = −exp (−Q|x|)
2Q

[

Jaa(1)(0)+ Jϕϕ(1)(0)
]

, (25)

ϕ(1)(x) = −exp (−Q|x|)
2Q

[

Raa(1)(0)+Rϕϕ(1)(0)
]

. (26)

Setting x = 0 in both sides of Equations (25) and (26) we

obtain the system of algebraic equations. The condition of
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solvability of the system obtained results in the equation

1+ Ja +Rϕ

2Q
+ JaRϕ −RaJϕ

4Q2
= 0. (27)

We assume that the unperturbed electric current density

and electric charge density are J(0) = −4πen(0)
e lv(0)

z,e/c and

R(0) = 0, respectively. Here the electron velocity along the z

axis is v(0)
z,e = β0c.

Obtained within the framework of cold electron and ion

hydrodynamics approximation Ja, Jϕ , Ra, and Rϕ are given

by

Ja = 2ω0e

c

(

1

γ (0)3
+µ+ k2c2

ω2γ (0)
β(0)

)

, (28)

Jϕ = −2ω0e

c

k2c2

ω2γ (0)
β(0), (29)

Ra = 2ω0e

c

k2c2

ω2γ (0)
β(0), (30)

Rϕ = −2ω0e

c

k2c2

ω2

(

1

γ (0)
+µ

)

, (31)

with γ (0) = 1/
√

1−β(0)2. Substituting these expressions for

Ja, Jϕ , Ra, and Rϕ into Equation (27) we obtain the dispersion

equation for the frequency ω and wave number k. It is

W2

[

1+ ω0e

Qc

(

1

γ (0)3
+µ

)]

+W
ω0e

Qc

[

β(0)2

γ (0)2

− 1

γ (0)
−µ− ω0e

Qc

(

1

γ (0)3
+µ

)(

1

γ (0)
+µ

)]

−
(

ω0e

Qc

)2
µβ(0)2

γ (0)2
= 0, (32)

where W = (ω/kc)2.

In the short wavelength limit, when kc/ω0e ≫ 1 the

growth rate of the tearing instability is approximately equal

to

Γ = β(0)

γ (0)

√

µω0ekc. (33)

In the long wavelength limit, when kc/ω0e ≪ 1 we have

the growth rate of the tearing instability

Γ = kcβ(0)γ (0)

√

µ
(

1+γ (0)3µ
)(

1+γ (0)µ
) . (34)

For high enough electron energy, in the range µ−1 ≫
γ (0) ≫ µ−1/3, Γ does not depend on the electron to ion mass

ratio, µ, being approximately equal to kcβ(0)γ (0).

Following from Equation (33) in the non-relativistic limit,

when β(0) ≪ 1 and γ (0) ≈ 1, the growth rate of the tearing

mode instability of thin current sheet is kcβ(0)√µ (see also

Ref. [89]).

2.4. The electric and magnetic field configuration arising

during decay of thin current sheet

In the case of a thin current sheet localized in the

y = 0 plane carrying the surface electric current density

2en0lcβ(0)δ(y), the magnetic field produced by this current is

B = (B0 sgn(x),0,0) with B0 = 4πen0lcβ(0). At the nonlinear

stage of the tearing mode thin current sheet can break

forming a finite length hole in the density distribution[97].

Accordingly, it is worthwhile to analyze in detail the

electromagnetic field configuration which arise during the

current sheet decay. Here we examine a model for the current

sheet decay assuming the time evolution of the electric

current to be given: at t > 0 the electric current density is

described by the dependence

j = I0f (x,t)δ(y)ez,

f (x,t) = 1− θ [x(t)−|x|] . (35)

In other words the current sheet breaks into halves, which

move apart along the x axis with their ends coordinates given

by x = ±x(t), i.e., the width of the gap formed in the current

sheet increases as 2x(t).

The electromagnetic field (it is the normalized electro-

magnetic potential a = eAz/mec2) is described by the wave

equation

∂xxa+ ∂yya− c−2∂tta = −ω0e

c
I0f (x,t)δ(y) (36)

with the initial conditions

a(t = 0) = −ω0e

c
| y | , ∂ta(t = 0) = 0. (37)

Solving the Cauchy problem for Equations (36) and (37)

with the surface electric current density given by Equation

(35), we find the electric field Ez = −∂tAz/c and mag-

netic field By = −∂xAz/c (the normalized fields equal d =
eEz/mec = −ȧ and b = eBy/mec = −a′). Here and below dot

and prime stand for derivatives with respect to time and x

coordinate.

If the coordinate x of the boundary of a gap in the current

sheet is a linear function of time,

x(t) = ±βct, (38)
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the electric field dependence on time and coordinates is

described by the expression

Ez (x,y,t) = I0β

2c
√

1−β2

× ln





(

t+ +
√

t2 − r2/c2

)(

t− +
√

t2 − r2/c2

)

(

t+ −
√

t2 − r2/c2

)(

t− −
√

t2 − r2/c2

)



, (39)

where

t± = t ± xβ/c
√

1−β2
(40)

and r2 = x2 +y2. In Figure 2 we show contours of equal value

of the electric field in the xy plane at t = 7.5. As can be seen,

the cylindrical electromagnetic wave propagates outwards

leaving almost constant electric field in the vicinity of the

center.

The y component of the magnetic field is given by

By (x,y,t) = I0

2c
√

1−β2

× ln





(

t+ +
√

t2 − r2/c2

)(

t− −
√

t2 − r2/c2

)

(

t+ −
√

t2 − r2/c2

)(

t− +
√

t2 − r2/c2

)



 . (41)

The x component of the magnetic field vanishes in the

plane y = 0 due to symmetry of the problem under consider-

ation.

At the point r = 0 the magnetic field is equal to zero, B = 0,

for all t. The electric field here is constant, given by

Ez (r = 0,t) = I0β

c
√

1−β2
ln

(

1+
√

1−β2

1−
√

1−β2

)

. (42)

Figure 2. Contours of equal value of the electric field in the xy plane at

t = 7.5.

In the non-relativistic limit of the current sheet evolution

for β = 1 the electric field is

Ez (r = 0,t) ≈ 2I0β

c
ln

(

2

β

)

. (43)

In the ultra-relativistic case, with β → 1, we have the

electric field Ez (r = 0,t) ≈ 4I0.

In the vicinity of the point r = 0 the magnetic field is a

linear function of the coordinates. According to Equation

(41) here the magnetic field is

By (r = 0,t) ≈ 4I0

cβt
x. (44)

We see that the electric field E ≈ βB0 is generated as

the current sheet decays. Here B0 is the magnetic field far

outside of the current sheet and β = v/c with v equal to the

characteristic plasma velocity.

Using the relationships obtained above for the electric and

magnetic fields near the point r = 0 (i.e., in the region r <

βct) the electromagnetic potential can be approximated as

Az (x,y,t) ≈ − 1

π
B0βct + B0

πβct

(

x2 − y2
)

. (45)

This expression describes nonstationary zero line of the

magnetic field of hyperbolic type. The electric field directed

along the zero line is constant, while the gradient of the

magnetic field decreases inversely proportional to the time.

3. Spontaneous magnetic field generation in laser-

plasma interaction

3.1. Thermoelectric field and ponderomotive driven field

Considering unmagnetized plasmas with ideal MHD condi-

tion, the electrons move quickly along the temperature and

density gradients due to their small inertia. The non-neutral

charge distribution generates an electric field. Combine the

ideal Ohm’s law (Equation (46)) and Cauchy momentum

Equation (47),

E+ u×B

c
= 0, (46)

neme∂tu = j×B

c
−∇P, (47)

where P is the electron pressure and ne is the number density

of the electron component. Taking the quasi-stationary con-

dition (∂tu = 0) into account, the self-generated electric field

is obtained,

E = −∇P

ene

. (48)
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Such a field is the response of the plasma to prevent

the electrons motion according to the gradients in electron

pressure. Applying curl on Equation (48) and plugging in

Faraday’s law (Equation (9)), it yields

∂tB = −c
∇ne ×∇P

en2
e

. (49)

Using the equation of state,

P = nekBTe, (50)

Equation (49) can be further extended to

∂tB = −ckB

ene

(∇ne ×∇Te), (51)

where kB is the Boltzmann constant and Te is the electron

temperature. When the laser irradiates on the solid surface,

the density varies mainly along the longitudinal direction

and the temperature gradient is significant in the transverse

direction. Therefore, a toroidal magnetic field is generated

around the laser axis due to the misalignment between the

gradients of the density and temperature. Such a spontaneous

magnetic field generation process is often called as the

Biermann battery effect[51]. It is proposed to be the origin

source of magnetic field in astrophysics and amplified as

the seed fields[98]. Biermann battery effect has also been

applied in the early laser driven MR experiments[50,52] with

moderate intensities (∼1015 W/cm2) and long pulse length

(∼ns), mega-gauss magnetic fields in plasmas at the focal

spot edges were obtained.

When the laser intensity becomes higher, the pondero-

motive force of the laser field expels the electrons away

from the focal spot and significantly changes the local

density distributions forming sharp density gradients. By

the continuous radiation pushing, the background electrons

are prevented from returning and shielding against the

charge separation field. A ponderomotive electric current

is formed J = neev ∼ ne∇I and it induces the magnetic

field as B ∼ ∇ne × ∇I. Theoretical and numerical studies

have proved that magnetic field with 100 MG can be

generated via the interaction of overdense plasma and

intense (I ∼ 1018 W/cm2) laser pulse[99–103]. Comparing with

Biermann battery effect, the ponderomotive driven magnetic

field is much stronger. However, it decays quickly after the

laser-matter interaction, which indicates the field has a life

time with the scale of the pulse duration (t ∼ τL). In contrast,

the magnetic field in Bierman battery effect decays in a long

time scale and can be regarded as a quasi-steady field.

3.2. Static magnetic field driven by energetic electron beam

The generation of magnetic field based on ultra intense

laser-plasma interactions has been investigated intensively

in recent years[104–106]. Furthermore, the interactions of

beam-plasma are also discussed for strong magnetic

dipoles generation[107,108]. The magnetic field generation

under the condition of ultra-intense laser interacting with

underdense or near critical density plasma is discussed

in this section. The ultra-intense laser considered here

means the corresponding intensity exceeds the relativistic

threshold (I ≫ 1018 W/cm2) and the laser power is beyond

the characteristic power of self-focusing (Pc = 2m2
ec5/e2 =

17 GW)[109]. The laser is assumed to have a short pulse

duration (cτL ∼ λp), in which λp is the plasma wavelength.

The strong ponderomotive force quickly expels electrons

from the laser path and leaves an electron plasma channel

which has a positive charge background since ions with heav-

ier inertia response slowly. Balancing the electron energy

gain and loss from the laser and the electrostatic potential,

eφstatic = εpond, (52)

πnee2R2
ch = achmec2, (53)

the radius of the plasma channel can be estimated,

Rch =
√

achnc

ne

λ

π
, (54)

where nc = mω2
L/4πe2 is the critical density of plasmas and

λ is the laser wavelength. ach is the laser pulse amplitude

inside the plasma channel[110], which is proportional to the

laser power and plasma density,

ach =
(

2

K

P

Pc

ne

nc

)1/3

, (55)

where K is a constant factor coming from the integration over

the duration of the laser pulse.

The charge separation field in the plasma channel appears

at the wake of the laser pulse and forms the so-called wake-

field[111]. In a relatively low density collisionless plasma,

the induced wakefield, following the laser pulse, propagates

with a phase velocity close to the speed of light in vacuum.

The electrons injected into the acceleration phase of the

wakefield with the initial velocity close to the wakefield

phase velocity can be trapped and accelerated. The strength

of the wakefield behind the laser pulse has been analytically

studied[112],

Ex (ζ,r) = − 2π2kpφL(r)

4π2 − k2
p(cτL)

2
×
[

sinkp (cτL − ζ )+ sinkpζ
]

,

(56)
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where the laser is supposed to propagate in x-direction,

ζ = x − ct is the transformation to the light frame, φL is the

ponderomotive potential of the laser pulse, and kp = 2π/λp

is the wave number of the Langmuir waves.

The trapped and accelerated electron beam generates a

current along the plasma channel. In the case of near critical

density plasma, the accelerated beam contains a large elec-

tric charge resulting in a strong direct current. Consequently,

the azimuthal magnetic field confined in the plasma channel

is produced. From Ampere-Maxwell law,

∇ ×B = 4π

c
j+ 1

c
∂tE, (57)

the strength of the magnetic field can be estimated provided

the quasi-static condition of ∂tE = 0. Since the magnetic field

has the same size as the radius of the plasma channel, one

obtains the maximum amplitude,

| B |= 4πneeRch. (58)

An example of kinetic simulation is presented here to

demonstrate the details of the process. Linear polarized laser

with the intensity I0 = 1021 W/cm2 is incident into the

plasma target with the peak density of ne = 0.25nc and

propagates along x-direction. The laser pulse has Gaussian

profiles in both transverse and longitudinal directions with

the full width at half maximum (FWHM) spot size of W0 =
5 µm and pulse duration τL = 30 fs.

The electron density distribution with a plasma channel

feature is shown in Figure 3(a). The radius of the channel

is about Rch ≈ 5 µm, which is well consistent with the

theoretical prediction according to Equation (54). Due to the

self-focusing effect, the laser amplitude inside the channel

is much larger than that of the initial field in vacuum.

The maximum amplitude of the wakefield excited by the

enhanced laser pulse therefore can be estimated to[113]

Ex = mec2

2πλe

(

ωpe

ω0

)2/3(
P

Pc

)1/6

. (59)

The profile of the longitudinal electric field along the laser

axis (y = 0) is presented in Figure 3(b) and the maximum

of the acceleration phase reaches about Ex,max ≈ 65 GV/cm.

The corresponding electron density profile (blue in Figure

3(b)) indicates a bunch of the electrons are trapped and accel-

erated in the wakefield. With such a high acceleration gradi-

ent, the electrons in the channel are expected to gain energy

quickly. The average energy distribution of the electrons,

< εe >=
∫

εe (x,y) f (x,y)dxdy
∫

f (x,y)dxdy
, (60)

is shown in Figure 3(c). The energy of the electron beam

reaches hundreds MeV and it corresponds to an electric

current density of ≈ 0.2ncec. According to Ampere-Maxwell

law, an azimuthal magnetic field is generated with the same

radius of the plasma channel as presented in Figure 3(d).
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Figure 3. The numerical demonstration of static magnetic field driven by energetic electron beam. (a) The electron density distribution with the plasma

channel formation. (b) The blue and red curves represent the longitudinal electric field and the electron density profile on the laser axis (y = 0). (c) The

average energy distribution of the electrons. (d) The z component of the azimuthal magnetic field induced by the energetic electron beam.
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The amplitude reaches about 0.6 GG which agrees with

the estimate obtained from Equation (58). The magnetic

dipole propagates together with the laser pulse in the plasma

channel, which is quasi-steady till the laser depletion and

the electron beam dissipation. The depletion length of the

pumping laser can be estimated when the laser energy is

completely dumped to the excited wakefield (εL ∼ εw),

E2
L

4π
cτL = nemec2 a2

ch

2
ldp, (61)

which can be rewritten in the form of

ldp = 2cτL

a2
0

(

2

K

P

Pc

ω0

ωpe

)2/3

. (62)

Equation (62) indicates that the magnetic field has a rela-

tively long time scale in the ultra-intense laser case, which is

important for designing the corresponding experiment.

4. Relativistic MR and magnetic field energy dissipation

4.1. Magnetic dipole expansion

According to Equation (54), the radius of the magnetic

dipole Rch is the function of local plasma density ne. Com-

bining Equations (54) and (55), Rch is then expressed as

Rch =
(

2

K

P

Pc

)1/6(
nc

ne

)1/3
λ

π
. (63)

Suppose the density distribution is inhomogeneous in the

longitudinal direction; then the size of the magnetic dipole

varies with the propagation as

dRch

Rch

+ λ

3π

vg

ne

∂ne

∂x
dt = 0, (64)

where vg is the group velocity of the pumping laser in the

plasma which is close to the speed of light since it is ultra-

intense and the plasma target is underdense. Equation (64)

implies that a longitudinal density down gradient will force

the magnetic dipole to expand in the transverse direction.

In Figure 4(a), an example of such B-field expansion is

presented. Here the plasma has a density down ramp in

x-direction from 0.25nc at x = 55λ to 0.17nc at x = 90λ.

In the region of x < 55λ, the density is homogeneous.

The magnetic dipole structures at different snapshots are

combined together to present the expansion effect clearly, in

which the dashed curves indicate the radius of the magnetic

dipole. From Region I to II, the dipole radius grows in the

density plateau region until it saturates at the maximum

radius according to Equation (54). In the density downramp

from Region II to IV, it expands significantly and doubles the

size from Rch ≈ 5λ to R′
ch ≈ 12λ. The transverse profiles of Bz

along different x-coordinates are shown in Figure 4(b). Based

on the Ertel’s theorem[114], the circulation of magnetic field,

∮

B ·dr = 4π

c

∫

j ·dS, (65)

is a Poincare invariant. Therefore, accompanying the size

growing, the amplitude of the magnetic field decreases,

which is also consistent with the numerical results shown

here.

The expansion of the magnetic dipole in the density

downramp provides an optimal condition for the study of

MR. By sending two parallel identical laser pulses into the

plasma (laser axes distributed at y1 and y2 along y-direction),

a pair of azimuthal magnetic dipoles are generated by the

parallel accelerated electron beams. In the ideal case, the two

magnetic dipoles are translational symmetry along the trans-

verse direction,

B(x,y,z) = B(x,y+d,z), (66)

where d is the separation distance of the two laser axes.

It should be noted that the separation distance between

the two pulses should be large enough to avoid the two

plasma channels interference with each other in the initial

stage, i.e., d > 2Rch. Due to the feature of magnetic dipole

in each channel, the total magnetic field has an antisym-

metry distribution on the two sides of the system center
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Figure 4. (a) The transverse expansion of the magnetic dipole along a density downramp region. The distributions of Bz at different snapshots are combined

here. (b) The profiles of Bz along different x-coordinates.
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Figure 5. (a) The energy density distribution (< neεe >) of electrons. The round circles represent the azimuthal magnetic fields. The projections of Bz

components in (b) the uniform density region and (c) the density downramp region.

yc = (y1 + y2)/2, i.e.,

B(x,yc + y,z) = −B(x,yc − y,z) . (67)

Therefore, with the expansion of the two magnetic dipoles,

the opposite magnetic polarities approach at the central

region in transverse, where the magnetic field annihilation

and the field line reconnection are expected to occur.

The double magnetic dipole structure and the expansion

are shown in the following dimensionless simulation. The

surf in Figure 5(a) represents the energy density distribution

(< neεe >) of the electrons. High density energetic electrons

driven by the double parallel laser pulses correspond to the

bright regions. The azimuthal magnetic fields around the

accelerated electron beams are depicted by the circles. The

projections of Bz components in the xy plane shown in Figure

5(b) refer to the early stage in which the two magnetic dipoles

are still propagating in the uniform density region without

expansion. In the density downramp region as shown in Fig-

ure 5(c), significant expansion of the magnetic dipoles forces

the opposite polarities to touch each other along the center

as indicated by the dot and cross signs. It also shows the

decrease of the magnetic field amplitude with the transverse

expansion. Both the size increase and the amplitude decay

are consistent with the theoretical predictions. The dashed

line here indicates the region of magnetic field annihila-

tion and a current sheet is developed locally during MR

process.

4.2. Magnetic field annihilation and field line reconnection

The 2D magnetic configuration in the transverse plane (yz

plane) can be described by a complex function[115],

B(y,z) = By − iBz, (68)

with a complex variable ζ = y + iz. In the vicinity of

the reconnection region (the dashed line in Figure 5(c)),

the magnetic field lines form a hyperbolic structure in the

transverse plane and the constant potential surface is

| A(y,z) |= ℜ
{

B0ζ
2/2
}

. (69)

Here A is the local vector potential. The magnetic fields

with opposite directions but equal amplitude meet at the so-

called zeroth point (X-point) where the sum of magnetic field

is zero. Figure 6(a) presents the hyperbolic magnetic field

lines distribution close to the zeroth point in the transverse

plane. With the approaching of the field lines to the X-point,

the lines reconnection occurs and the magnetic fields vanish

associated with the generation of electric field according to

E = −1

c
∂tA. (70)

Therefore the charged particles can be accelerated during

MR via such an electric field produced by the rapid change

of magnetic field, which will be discussed in detail in the
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Figure 6. (a) and (b) are contours of the constant vector potentials around

the X-point based on theoretical model. (a) refers to the initial stage when

the opposite magnetic fields just begin to vanish. (b) refers to the moment

when the current sheet in MR has formed and bifurcated. (c) and (d) are the

corresponding distributions demonstrated by numerical simulations.

next section. The current driven by the accelerated particles

generates an extra magnetic field represented by the blue

curve in Figure 6(b). The new magnetic field changes the

field topology and the X-point breaks into two new zeroth

points as depicted by X′. The X-point bifurcation continues

and the X-point grows to be a current layer shown by the red

region in Figure 6(b), which is known as the current sheet. It

can also be understood as the electric current filamentation

and breaks up to separated pieces due to the tearing mode

instability. The development of such a process takes about

15 laser periods. According to the theoretical estimate in

Equation (33) under the short wavelength limit, the growth

rate of the tearing instability is about τ−1, the reciprocal

of the pulse duration, which is about 11 laser periods. The

broken configuration of magnetic field is given by

B(y,z) = B0ζ
√

s(t)2 − ζ 2
. (71)

Here s is the spatial scale of current sheet modula-

tion[115,116]. The corresponding vector potential is

| A(y,z) |= ℜ
{

B0

√

s(t)2 − ζ 2

}

. (72)

Recalling Equation (70), the electric field is given as

E(t) = −1

c

B0s(t)ṡ(t)
√

s(t)2 − ζ 2
. (73)

The 2D configuration of magnetic field lines and the

constant vector potential is demonstrated by a 3D numerical

simulation. The curves and the vectors in Figures 6(c) and

6(d) present the contour magnetic field strength and the

magnetic field lines with directions. The formation of X-

point corresponding to the situation of Figure 6(a) is shown

in Figure 6(c) in which the magnetic field loops produced by

the parallel currents form an eight-like curve with a single

zeroth-point localized in the center. The opposite magnetic

field lines in the vicinity of the zeroth-point are not vanishing

each other at this moment.

With the process of MR and the development of tearing

instability, the X-point breaks and a thin current sheet grows

as seen in Figure 6(d). The new closed loops in the middle

of the current sheet can be regarded as the magnetic islands

which are the results of tearing driven current filamentation.

The X-point also separates along z-direction and the mag-

netic field lines around the bifurcated X′-points change their

directions to connect the lines generated from the other cur-

rent (indicated by the vectors). The evolution of the magnetic

field structures shown in Figure 6(d) is well consistent with

the theoretical model displayed in Figure 6(b).

4.3. Relativistic magnetic field dissipation and inductive

electric field generation

Recalling Ampere-Maxwell law in Equation (57), the term of

displacement current (jD = ∂tE) is normally neglected in the

context of MHD approximation. In the vicinity of the current

sheet, the curl of magnetic field can be estimated as B/rcs,

where rcs is the characteristic size of the current sheet. In this

case, the Ampere-Maxwell equation excluding displacement

current can be rewritten as

B

rcs

= 4π

c
ncseu, (74)

where ncs and u are the density and velocity of the charged

particles inside current sheet. Due to the relativistic con-

straint that the particle velocity cannot exceed the speed of

light, the following relation is obtained to satisfy the MHD

approximation,

B

4πencsrcs

= u

c
≤ 1. (75)

However, in the relativistic regime of MR, such a relation

is not always satisfied. Considering the situation of ultra-

intense laser interacting with underdense or near critical

density plasma, substituting the magnetic field with Equation

(58), one obtains

neRch

ncsrcs

= u

c
≈ 1. (76)
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Here the velocities of the relativistic charged particles are

assumed to reach their upper limits of the light speed. As

mentioned above, the current sheet is formed in the density

downramp region where the magnetic dipoles are expanding,

which implies the local density is much lower than the

density plateau where the energetic electron beams and static

magnetic fields are formed, i.e., ncs ≪ ne. On the other hand,

the size of the current sheet is obviously smaller than the

radius of magnetic dipoles, i.e., rcs ≪ Rch. Therefore, under

the relativistic MR regime, the above relation changes to

neRch

ncsrcs

≫ 1, (77)

and the restrained condition for MHD approximation in

Equation (75) becomes invalid. This means the limited con-

duction current (neec) is not able to sustain the variation of

magnetic field (∇×B) and the effect of the displacement cur-

rent (jD = ∂tE) must be taken into account. The displacement

current refers to the growth rate of an inductive electric field.

To compensate the difference of c∇ × B and the conduction

current, substituting magnetic field with Equation (58) and

the local current in the current sheet with ncsec, the inductive

electric field is obtained,

∂tE = 4πneec

(

Rch

rcs

− ncs

ne

)

. (78)

The displacement current plays an important role here to

balance the fast magnetic field variation and converts the

energy from magnetic field to electric field. The growing

inductive electric field indicates the relativistic MR is a non-

stationary process violating the freezing-in condition and the

corresponding Ohm law should be modified[73,74]. Due to the

non-stationary feature, the relativistic MR is also proposed

as dynamic dissipation of magnetic field[75].

The growth of displacement current and the generation of

the inductive electric field via magnetic field annihilation

are presented by kinetic simulations. Figure 7(a) shows the

distribution of the magnetic dipoles during the opposite

polarities vanishing. The relativistic MR is expected to occur

in the current sheet region of 80 < x (λ) < 110 and y ∼ 0.

The components of Ampere-Maxwell law in Equation (57)

along y = 0 are plotted in Figure 7(b) in which the surface

represents the distributions of the longitudinal electric field.

Two clear peaks of displacement current (red curve) can be

found in the region of 100 < x (λ) < 110 and 80 < x (λ) < 90.

Both of the regions have relatively low conduction currents

(blue), which is consistent with the theory model mentioned

above that the appearance of displacement current is to

balance the gap between the curl of magnetic field (black

curve) and the conduction current. The longitudinal electric

field (green curve) always grows behind the peaks of the

displacement currents and the interval between the peaks of

Ex and jD indicates the growth rate. On the surface of Ex

distribution, the two bright peaks around 100 < x (λ) < 110

are the laser driven wakefields. In the region close to y = 0,

the fields are induced by the displacement current in MR,

which is lower than the laser driven wakefield but with the

same order of magnitude. The heavier mass of the ions limits

the acceleration effect. Under the interactions with state-of-

the-art high power laser and plasmas, the out-jets here are

mainly produced by the accelerated electrons. It is noted

that the inductive electric fields accelerate electrons in the

counter-propagation direction of the laser pulse. Therefore,

the electrons are accelerated in the backward direction and

only experience the inductive electric field in a short range

since they are not co-moving with the magnetic dipoles.

4.4. Charged particle acceleration in relativistic MR

Charged particles in the current sheet experiencing strong

inductive electric field will be accelerated to leave the

reconnection region with relativistic energy forming high

energetic out-jets. Such violent acceleration is independent

of the Joule dissipation since the energy is much higher

than the thermal energy. The out-jets in MR are commonly

observed in astrophysics. It also relates to the explanation

of the narrow radiation spectrum obtained from the Crab

Nebula[40–43]. A typical supra thermal electron spectrum

is presented in Figure 8 based on the setup discussed in
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Figure 7. (a) The magnetic field Bz distributions in the simulation when MR is occurring. (b) The surface represents the distribution of longitudinal electric

field (Ex). The curves are the profiles of all the components in Ampere-Maxwell law (Equation (57)).
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Figure 8. The energy distributions of the electrons inside current sheet

before and after magnetic field reconnection.

Section 4.3. The incident parallel laser pulses have the

intensity of 1021 W/cm2 and the plasma plateau density

is 0.2nc. The cutoff energy increases from several MeV

to ∼40 MeV during the electrons propagating through the

reconnection region. The energy dumping from magnetic

field to the bunch of supra thermal electrons is about 1%.

The energy of the backward jets from MR is not comparable

to the wakefield acceleration. The propagation direction of

the inductive electric field is opposite to the direction of

the out-jets. Therefore the electrons experience only short

acceleration stage in the electric field and the electrons are

not trapped.

Here we discuss the details of the particle acceleration

dynamics in the regime of relativistic MR. Suppose there is

a hyperbolic distribution of magnetic field in the vicinity of

the X-point as shown in Figure 9(a). The inductive electric

field is generated according to the variation of magnetic field

in the transverse plane which results in the growth of the

electric field along the longitudinal direction. Therefore the

fields in the vicinity of the X-point are described as

E = E0x̂, (79)

B = b0

(

−yẑ− zŷ
)

. (80)

The charged particle motion is dominated by Lorentz

force dp/dt = q(E+v×B/c). The dynamic equations for

different components can be expressed as

dpx

dt
= qE0 + q

c
(v×B)x = q

[

E0 + b0

2c

d
(

z2 − y2
)

dt

]

, (81)

dpy

dt
= q

c
(v×B)y = q

b0

c
y

dx

dt
, (82)

dpz

dt
= q

c
(v×B)z = −q

b0

c
z

dx

dt
. (83)

According to Equation (81), the particle motion in the

longitudinal direction is homogeneous and can be obtained

with time integral,

px = q

{

E0t + b0

2c

[(

z2 − z2
0

)

−
(

y2 − y2
0

)]

}

. (84)

The acceleration process in MR can be derived with

respect to non-relativistic and relativistic conditions[117].

Here we shall focus on the relativistic case of charged

particle acceleration driven by inductive electric field. The

characteristic scale length of electron motion in MR region

can be estimated as the Larmor radius

R = cp

e | B | = cp

qb0rcs

. (85)

Considering the particles are only accelerated by the

longitudinal electric field,

cp = qE0rcs, (86)

the characteristic scale length can be written as

R = E0/b0, (87)

and the corresponding characteristic time when the electrons

are accelerated before leaving MR region is

T = R/c = E0/cb0. (88)

The longitudinal motion of the accelerated charged parti-

cle in relativistic case is simply as

x(t) = ct, (89)

and the corresponding momentum is

px = γ mvx = εε̇

qE0c2
. (90)

Here ε is the kinetic energy of the particles. Comparing

with the general solution of longitudinal momentum in

Equation (84), one obtains

εε̇

qE0c2
= q

{

E0t + b0

2c

[(

z2 − z2
0

)

−
(

y2 − y2
0

)]

}

. (91)

In the region of current sheet, where
(

y2 + z2
)

< R2, the

second term on RHS of Equation (91) can be neglected.

Therefore the kinetic energy of the accelerated particles can

be simplified as

ε(t) =
(

ε2
t=0 +q2E2

0c2t2
)1/2

. (92)
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Figure 9. (a) Schematic of the theoretical model in the vicinity of X-point. (b) The analytical solutions of particles motion with the expressions in Equations

(96) and (97). (c) and (d) are the trajectories of charged particles given by the solutions of Equations (98) and (99) for the initial conditions of B0/E0β = 3,

y(1) ∈ [−2,2],ẏ(1) = 0 and z(1) ∈ [−2,2], ż(1) = 0. (e) and (f) show the typical accelerated particle trajectories obtained in the kinetic simulations.

From the equation of motion for dp/dt = d(γ mv/dt), the

following relation can be derived,

ẍα + ẋα

ε̇

ε
= ṗα

c2

ε
, (93)

here xα refers to the x, y and z directions in Cartesian

coordinates. Recalling Equations (82) and (83), the particle

motions in the transverse plane are obtained,

ÿ+ ẏ
ε̇

ε
= −cb0

E0

ε̇

ε
y, (94)

z̈+ ż
ε̇

ε
= cb0

E0

ε̇

ε
z. (95)

Since the particles are accelerated to relativistic energy

which is much higher than its initial energy εt=0, it is

reasonable to estimate the particle kinetic energy in Equation

(92) as ε(t) = qE0ct. Therefore, the solutions of Equations

(94) and (95), i.e., the particle motions in the transverse plane

can be written as

y(t) = y0J0

(
√

4b0ct

E0

)

, (96)

z(t) = z0I0

(
√

4b0ct

E0

)

, (97)

in which J0(x) and I0(x) are the ordinary and the modified

Bessel function of zeroth order. The analytical solutions

of particles motion in y and z directions are plotted in

Figure 9(b). It presents an oscillation along y-direction and

an exponential expansion in z-direction.
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In the above presented analysis of the charged particle

acceleration in the vicinity of hyperbolic zero line of the

magnetic field, Equations (79) and (80) describe the con-

figuration with constant gradient of the magnetic field, i.e.,

b0 is a constant. This corresponds to the case when the

charged particle moves faster than the magnetic configu-

ration changes. In ultra-relativistic limit the characteristic

velocity of both the charged particles and of the magnetic

field modulations is close to the speed of light in vacuum.

Using Equations (44) and (71) showing that the magnetic

field gradient is inversely proportional to time, b0 = B0/βct

and ε = qE0ct (see Equation (91) in the limit t → ∞), we

can modify the equations of the electron motion to the form

ÿ+ ẏ
1

t
= − B0

E0β

1

t2
y, (98)

z̈+ ż
1

t
= − B0

E0β

1

t2
z, (99)

i.e., they are the Cauchy-Euler equations. These equations

have the solutions

y(t) = y1 cos

(
√

B0

E0β
ln t

)

+ y2 sin

(
√

B0

E0β
ln t

)

, (100)

z(t) = z1t

√

B0
E0β + z2t

−
√

B0
E0β

, (101)

where constants y1, y2, z1, and z2 are determined by initial

conditions.

The solutions of the analytical model for the accelerated

particle trajectories as functions of time along y and z direc-

tions are presented in Figures 9(c) and 9(d), respectively. The

corresponding results obtained from 3D kinetic simulations

are shown in Figures 9(e) and 9(f). The electrons from the

current sheet experiencing the inductive electric field accel-

eration are randomly sampled here. As mentioned above, the

accelerated electrons move opposite to the laser propagation

direction from the current sheet. Here the starting point of

the backward electrons motion is set to be x = 0. Figure

9(e) reflects the fact that the in-flow electrons are squeezed

into the current sheet along the y direction pushed by the

expanding magnetic dipoles. The candidate electrons can

actually come from the region far from the current sheet.

Once applied by the growing inductive electric field, the

electrons move backwards with a clear oscillation. However,

in the z-direction, all the candidate electrons must locate in

the region close to z = 0 and there are no in-flows along

this direction. These electrons expand in the z-direction

afterwards while being accelerated. The simulation results

show well consistency with the analytical model shown in

Figures 9(c) and 9(d).

5. Potential experimental setup for relativistic MR

As demonstrated above, high power laser provides unique

methods to investigate MR and model the corresponding

astrophysics phenomena in terrestrial environment labora-

tory. MR experiments driven by laser-plasma interaction

in MHD scale with moderate laser intensity have been

discussed in the previous sections; here we present several

recent proposals for relativistic MR by using PW-class laser

pulses. One of the main difficulties in laser-driven relativistic

MR is the synchronization of the incident laser pulses. The

delay between the pulses should not be larger than the length

of the magnetic dipole (c1τ < LB) to avoid the mismatching

of the opposite magnetic polarities. To overcome this issue,

recently two setups are proposed by employing a solid cone

target[118] and higher order mode laser pulse[119], which will

be presented here.

5.1. Relativistic MR with higher order mode laser

A Hermite-Gaussian mode beam in the transverse plane

propagating in x-direction can be described as

El,m = E0

w0

w(x)
Hl

[√
2y

w(x)

]

Hm

[√
2z

w(x)

]

× exp

[

− r2

w2(x)

]

exp

[

−i
kr2

2R(x)

]

× exp {−i [kx− (l+m+1)ϕ(x)]} . (102)

Here Hl,m are the Hermite polynomials, w(x) is the Gaus-

sian beam radius, ϕ(x) is the Gouy phase at x, and R(x) is the

radius of curvature of the beam’s wavefronts. In the case of

l = m = 0, the fundamental Gaussian beam is obtained. Now

considering the TEM10 mode with l = 1 and m = 0, Equation

(102) becomes

E1,0 = E0

w0

w(x)

2
√

2y

w(x)

× exp

[

− r2

w2(x)

]

exp

[

−i
kr2

2R(x)

]

× exp {−i [kx−2ϕ(x)]} . (103)

On the focused plane with x = 0, the intensity distribution

is

∣

∣E1,0

∣

∣

2 =| E2
0 | 8y2

w2
0

exp

(

−2r2

w2
0

)

, (104)

which is presented in Figure 10(a) in logarithmic scale. The

corresponding profile in the polarization direction (y) is

shown in Figure 10(b). It has double peaks in the intensity

distribution which becomes comparable to the case with two
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Figure 10. (a) The intensity distribution of TEM10 mode laser on the focused plane and (b) the corresponding profile. (c) The electron density distribution

and (d) the Bz distribution obtained from numerical simulations in the interaction of TEM10 mode laser with plasma.

laser pulses. However, in the higher order mode case, the

two intensity peaks are naturally synchronized. The electron

density distribution in the interaction of TEM10 and plasma

is presented in Figure 10(c). The kinetic simulation presented

here has the following parameters, I = 5 × 1021 W/cm2,

transverse size 16λ and the pulse duration of 20fs. The

plasma target is near critical hydrogen with the density of

0.1nc. Two identical electron bubbles are formed and prop-

agating in parallel. Wakefield acceleration occurs in each

bubble and generates two energetic electron beams inside the

bubbles. The corresponding magnetic dipoles produced by

the accelerated electron beams are shown in Figure 10(d),

which is similar to the situation presented in Figure 5(c). In

the case with TEM10 mode laser, the magnetic dipoles are

tightly attached after generation, which forces the magnetic

field to start annihilation in the very beginning stage. The

following MR process has been discussed thoroughly above.

The advantage by employing TEM10 mode laser is the

simultaneous production of the parallel magnetic dipoles,

which overcomes the difficulties of laser synchronization.

5.2. Laser split by solid cone target

When the high power laser has a relative broad spot size, it

is possible to use a solid cone target to split the laser forming

a donut shape pulse. By placing such a target in front of

the near critical density plasma, the donut shape pulse after

interaction generates a forward accelerated electron ring.

The corresponding magnetic field has opposite polarities in

the center which are expected to annihilate and induce the

charged particle acceleration via inductive electric field. The

reconnection rate for the laser split case is affected by the

geometry of the cone target. The opening angle of the target

determines the separation distance between the pulses after

split. However, if the angle is too large, it reflects a significant

portion energy of the incident laser. The detailed process

is presented by the following numerical simulation results

with the parameters of I = 1021 W/cm2, transverse size 20λ,

and the pulse duration of 15fs. The cone target has the

solid density of 50nc and the following near critical density

plasma is 0.3nc. Figure 11(a) presents the laser intensity

before and after passing through the solid cone target. An

initial Gaussian speckle is shown at t = 6T0 and it is partially

reflected in the center by the splitter as shown in the plane

of t = 13T0. At t = 20T0, the multi-rings correspond to

the diffracted fields by the cone target. Due to the self-

focusing effect, the field amplitude is enhanced again and

forms the donut shape propagating forward into the near

critical density target as presented in the t = 27T0 plane.

The electron density distribution driven by the fields after

splitting also presents a ring structure in the transverse plane

as shown in Figure 11(b) the left plane. In the longitudinal

plane (xy plane), the parallel electron channels are formed

in which the trapped electron beams are accelerated as

discussed above. Magnetic dipoles (shown in the bottom

plane) are formed with a similar structure as mentioned

above. Annihilation and reconnection of the magnetic fields
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Figure 11. (a) The evolution of incident laser intensity before and after interacting with the solid cone target. A loop structure (donut shape) is formed.

(b) The electron density distribution driven by the donut shape field. The rear plane corresponds to the density distribution slice of y = 0. The left plane is

the projection of the slice of x = 85λ. The bottom plane is the projection of magnetic field Bz distribution, which shows the magnetic dipoles are formed.

are expected in the center plane. By using the solid cone

target, if the laser pulse is well collimated on the cone, the

difficulty of multi laser synchronization is also overcome.

6. Summary

During interaction of ultra-intense lasers with plasma targets

strong static magnetic fields can be generated via the

electric current produced by the energetic electron beams

accelerated by the laser. In the relativistic laser plasma the

generated magnetic field plays an active role leading to the

magnetic interaction and coalescence of the self focusing

channels, their bending, and accumulating of the magnetic

energy[120,121]. The magnetic field left behind the ultra-

short laser pulse as well as at the vacuum plasma interface

has a pattern determined by the electron vortices[122],

which can annihilate[123] resulting in the electron and ion

acceleration[124,125].

As noticed in a review article[63], the development of high-

power lasers provides the necessary conditions for experi-

mental physics where it will become possible to study rela-

tivistic regimes of the magnetic field line reconnection, mak-

ing the area of relativistic laser plasmas attractive for model-

ing key processes for relativistic astrophysics. Reconnection

of magnetic field lines implies oposite-polarity magnetic

field interaction in the high electric conductivity plasma.

Ultra-relativistic regime of interaction of oppositely

directed magnetic fields can be realized in the configuration

with double laser pulses irradiating a tailored plasma target.

The laser pulses drive the wake field accelerating the

electrons whose electric current generates strong magnetic

fields colliding in the low density plasma region. The

opposite magnetic field polarities annihilation converts the

magnetic field to an induced electric field accompanied

with the variation of the magnetic field line topology

and formation of thin current sheet. It is proved that

the displacement current plays an important role in such

relativistic MR due to the constraint of the conduction

current carried by the electrons. The strong displacement

current induces a fast growing inductive electric field which

accelerates the charged particles inside the current sheet,

i.e., the magnetic field finally transfers to the particle kinetic

energy. The evolution of the current sheet via the tearing

mode instability development leads to the magnetic island

formation. As one of the signatures of MR, the out-jets

trajectories are described both analytically and demonstrated

numerically. Several setups are proposed here for the

potential MR experiment to be carried out on the high power

laser facilities. What we presented here proves the possibility

to investigate and model the ultra-relativistic astrophysical

phenomenon in the laboratory via laser-plasma interactions.
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